推进技术 ›› 2019, Vol. 40 ›› Issue (8): 1895-1901.DOI: 10.13675/j.cnki. tjjs. 180546
摘要: 为了获得准确的轮盘式特种调节阀流量特性模型,提高高空舱进口流量预测精度,提出了基于BP神经网络和NARX网络的建模方法。在对调节阀与传感器测点位置分析的基础上,将调节阀和阀后容腔作为整体进行建模。对比研究了流量系数、静态BP神经网络以及基于Gamma Test的动态NARX网络建模方法,并给出了工程中选取建模方法的建议。以试验流量数据为基准,仿真对比了不同阀门开度变化时,各模型输出流量的稳态误差和动态误差。结果表明,BP神经网络方法和NARX网络方法建模精度要优于流量系数法。同时,BP神经网络模型最大稳态误差为0.52kg/s,优于NARX网络模型和流量系数模型。NARX网络模型的最大动态误差为2.04kg/s,相比于BP神经网络模型和流量系数模型,能够更准确地反映流量的动态特性。